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Abstract— 
In this paper a single-cycle issue queue circuit architecture that simplifies the wakeup and selection logic is 

proposed. The micro-archi- tecture and fully static CMOS circuits are presented for a 32-entry queue that issues 

four instructions per cycle. The instruction-ready signals are di- vided into groups and processed in parallel to 

issue the four oldest ready instructions. The complete issue queue and prioritization logic requires 20 

inversions, allowing simulated circuit operation at over 4 GHz in a foundry 45 nm SOI fabrication process. 

Index Terms—CMOS digital integrated circuit, issue queue, microprocessor, out-of-order instruction issue, 

superscalar.

 

I. INTRODUCTION 

Microprocessor instruction streams contain 

instructions that can potentially execute in parallel. 

This instruction level parallelism (ILP) is the 

foundation of superscalar processing. ILP provides 

a consider- able gain in instructions per cycle (IPC). 

With the ability to look across multiple instructions 

in the issue window, out-of-order execution 

significantly improves IPC over in-order execution. 

However, this performance comes at a power and 

complexity price. 

 

A.  Superscalar Pipeline 

A typical superscalar pipeline is as shown in 

Fig. 1(a).  In-order and speculation techniques 

occupy different sections of the complete pipeline. 

Dynamic scheduling lies between  the decode and 

execute stages, eliminating false dependencies 

through register-renaming and reducing  pipeline  

inefficiencies due to  data dependencies through 

superscalar  out-of-order execution. To maintain  

precise  exception behavior the commit stage forces 

in-order commitment of results to the machine 

architectural state.  This paper presents a simple, 

low power design for the critical issue stage [1], 

selecting the four oldest ready instructions. 

 

B.  Instruction Issue Logic 

Selection of highest priority ready instructions 

requires a buffer to store instructions, a dependency 

tracking mechanism to generate ready signals (ready 

indicates that a given instruction inputs will be valid 

in the next cycle) and a mechanism to pick 

instructions according to a se- lection policy. These 

requirements are fulfilled by the instruction issue 

logic that has wakeup and selection logic blocks as 

shown in Fig. 1(b). 

 

C. Paperrganization 

Section II briefly discusses the prior related 

work. The  proposed architecture is described in 

Section III, focusing on the micro-architectural 

organization and circuit design.  Section IV 

covers the performance evaluation and simulation 

results. Section V concludes the paper. 

 

 
Fig. 1.  Superscalar pipeline (a) showing where the 

issue logic resides. (b) Instruction issue logic high 

level functional diagram. 

 

The wakeup logic is comprised of a queue that 

stores the renamed instruction registers, tracks 

their dependencies and generates ready signals 

based on the which dependencies’ results are 

ready in the next clock. The selection logic 

prioritizes the ready instructions for issue. The 

update logic then accepts new instructions into the 
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queue in the next cycle, maintaining the ordering of 

existing entries and opened slots with new 

instructions at the clock edge. 

 

II. RELATED WORK 
A. Complexity and Single vs. Distributed Queues 

The instruction issue logic performance is 

quantified in terms of its critical timing path. 

Palacharla et al. analyzed the impact of issue width 

and window size on the complexity of  wakeup 

and selection logic [2] where since dependent 

instructions cannot be simultaneously executed, 

they were distributed heuristically into first-input 

first-output (FIFO) buffers. Only instructions at the 

head of each buffer are considered for issue. The 

IBM Power4 design utilizes 11 single issue 

specialized queues [3]. Vangal et al. also 

distributed the issue window with two single issue, 

eight-entry instruction schedulers [4] where to 

enable fast parallel execution, complementary 

signal generation (CSG)-based ready and select 

logic was used, creating an inherent timing race 

condition requiring extensive manual circuit 

validation, i.e., design effort. Distributed windows 

reduce performance and require more entries to 

achieve the same IPC as a centralized window due 

to underutilization [5]. 

 

B.  Speed and IPC Impact 

Prioritizing ready instructions accounts for 

more than half of the latency of an issue queue [6] 

and so must be comprehended by any scheme. 

Stretching the issue logic  operation loop over two 

or three clock cycles incurs an IPC loss of 10% or 

19%, respectively. Oldest- first selection gives an 

IPC benefit of up to 8% over a random position-

based scheme and provides better instruction 

sequencing [7]. Farrell et al., used a compacting 

register scoreboard to preserve the temporal order of 

the queue for the Alpha 21264 [8] at the cost of 

significant data movement. This design used a  

dynamic tree-based re- quest-grant arbitration 

scheme for oldest-first selection, ordering en- tries 

in the queue by age. 

 

C.  Power Dissipation 

The issue logic is a significant component of the 

overall power consumption, e.g., in the Alpha 

21264, 18% of the total power was dissipated in the 

all dynamic logic issue queues [9]. Bahar et al. 

asserted that the arbiters in the 21264 [8] account 

for around 35% of the total processor power when 

using a two arbiter scheme [10]. Goshima et al. 

claimed dependence detection in wake-up logic is 

similar to register renaming dependency detection 

[11] and proposed scheduling using matrices 

instead of content addressable memory (CAM) to 

track instruction dependencies. Though  matrix 

functions are faster and dis- sipate less power than 

CAM-based operations, the matrix nature limits 

their practical size [12]. Sassone et al. proposed a 

modified matrix scheduler to improve the scalability 

of this scheme, based on the observation that 

wakeup and select matrices are sparse [12]. 

 

D.  Sort-Based Issue Logic 

To overcome the complexity of tree-based 

schemes and  improve the cycle time while 

minimizing power, sort-based issue prioritization 

logic [13] provides a comparison point for the issue 

queue design that this brief proposes. In [13] the 

ready generation follows that used in [8] in that it 

uses a scoreboard and oldest to newest instruction 

ordering. The priority selection logic uses multiple 

odd-even merge sorting net- works to select four 

oldest ready instructions from the issue queue. 

Except for the scoreboard based issue circuits the 

design only uses static CMOS gates. The ready 

instructions are selected in parallel by sorting them 

in small groups, resulting in manageable sorting 

network depth. The results of these group selects are 

then prioritized to determine the overall  oldest four 

instructions. The shift logic utilizes small barrel 

shifters to control scoreboard compaction. 

 

III.  PROPOSED ISSUE QUEUE 

MICRO-ARCHITECTURE 
The proposed issue queue uses a static CAM to 

track dependencies between instructions. 

Instructions are shifted to keep the oldest at the top 

to provide easy prioritization as in [3], [8] . Fig. 2 

shows the signal flow for the proposed shift based 

issue logic. The select logic is implemented 

primarily using shifters, with simple issue count 

logic and shift/grant logic. As opposed to a dynamic 

scoreboard, the static CAM 

 

 
 

Fig. 2. Signal flow for shift-based issue logic. 

Simplifications by cascading 

shift-based priority logic are evident by the removal 

of the one-hot conversion, output multiplexing, and 

decode stages 
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Fig. 3. Overall micro-architecture of the proposed 

issue queue. 

 

Minimizes instruction wakeup power while the low 

complexity static shifters and multiplexers maximize 

the performance by reducing the critical timing path 

while minimizing power. The CAM compares 

currently executing operation destination tags 

with pending operation source tags, setting latched 

ready signals. Since the CAM window shifts 

instructions before accepting new instructions, oldest 

instructions are always at the top of the queue, i.e., 

instruction 0 has highest priority while instruction 31 

has the lowest priority (see Fig. 3). The select logic 

selects the four  highest priority, ready instructions 

by checking if three or less prior (higher priority) 

instructions are ready to issue before each ready 

instruction. If this condition is satisfied, the ready  

instruction grant signal is asserted, i.e., issued. The 

clock cycle begins by comparing the destination tags 

with the source operands of each pending operation 

in the static CAM. If both the operands of an 

instruction are ready and the instruction is valid, the 

ready signal, which is the output of a latch, is set for 

that entry. Ready signals, rdy(031) are forwarded to 

the select logic to generate grants and shifter 

controls for compaction.   

The ready signals are divided into four groups each 

processing eight entries in parallel (see Fig. 3). The 

first shifter one-hot outputs L_ad(0-3)  for each 

instruction indicate the number of entries ready to 

issue prior to the current one (above it) within the 

local (L) group, labeled by suffixes a-d. The first 

shifter circuit (e.g., shifter1a) one hot outputs T_a-

d(0-3) indicate the total number of ready instructions 

in the a group. The issue count logic, labelled ICL 

combines the total ready instructions to calculate the 

multiple-group totals (signals starting with IT) to 

generate the global issue signals G_a-d(0-3). The G 

signal generation in terms of L and T follows: 

 

 
that are calculated in shifter2. This shifter basically 

sums the and terms. An instruction is granted if it is 

ready and the total number of ready instructions 

before it is less than four, i.e., G_a<4. The grant 

signals and shift signals set up to the clock rising 

edge.  To illustrate the signal flow for a specific 

case, consider for example, if instructions in issue 

queue locations 1, 2, 8, 11, and 27 are ready. L_a(0-

3)=0010 indicating two instructions are ready. 

T_a(0-3)=0010 indicating two instructions are ready 

from group a. T_b(0-3)=0010 as two instructions, 8 

and 11 are ready from group b. instructions 12–15 

since more than three instructions are ready before 

them. Finally, depending on whether a given entry is 

ready and the total number of instructions ready 

before it, G(0-3) , grant and shift signals are 

generated for each instruction. 

 

A. Static Wakeup CAM Logic 

The CAM shown in Fig. 4 is fully static and 

overcomes scoreboard limitations, particularly high 

power dissipation, with negligible performance 

impact. The CAM storage is separated from the 

CAM compare in order to accommodate four 

simultaneous searches, and uses static CMOS shift 

and update circuits. CAMstorage for each instruction 

consists of two encoded source operands that are 6-

bits, and one valid bit. The  storage/update circuit of 

the valid bit is similar to the CAM store circuitry. 

The shift(0–4) signals arrive before the rising edge 

of the clock to update the CAM opposed to a 

dynamic scoreboard, the static CAM minimizes 

instruction wakeup power while the low complexity 

static shifters and multiplexers maximize the 

performance by reducing the critical timing path 

while minimizing power. The CAM compares 

currently executing operation destination tags with 

pending operation source tags, setting latched ready 

signals. Since the CAM window shifts instructions 

before accepting new instructions, oldest 

instructions are always at the top of the queue, i.e., 

instruction 
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Fig. 5.  First shifter, (a) first column cell, (b) 

shifter cell, (c) overall circuit architecture. The 

outlined columns use inverted logic. 

 

B. Shifter-Based Select and Update 

The all static CMOS select logic is implemented 

using a first level shifter, issue count logic, a second 

level shifter and shift grant generator logic. As 

mentioned, the ready signals from the wakeup logic 

are divided into four groups of 8-instructions to 

parallelize the prioritization. 1) First Shifter Based 

Priority Stage: The four first stage prioritization 

shifters, shifter1a through shifter1d, each handle 

eight sequential instruction-ready signals. The first 

column shift unit cell circuit is shown in Fig. 5(a) 

and others in Fig. 5(b). To determine if three or less 

instructions are ready above the current one, four 

columns are used as shown in Fig. 5(c). The layout 

of each of these corresponding blocks is shown in 

Fig. 6. Columns 1 and 3 are driven with inverted 

inputs, allowing inverters rather than buffers in the 

basic cell to limit the total  Number of inversions. The 

column inputs ‖1101‖ indicate zeros instructions are ready 

before the first instruction. The outputs L_a—d(0-3) 

Indicate the number of instructions that are ready to be 

issued within the group. If four or more instructions are 

ready, L(0-3)=0000. The Shift1 block operation is 

depicted in Fig. 7(a). The first column shows ready 

instructions in the group of eight. The first row has a 

hard- coded value as ―1000‖. These values will pass 

to next row if the subsequent ready signal is ―0‖ 

else will shift right (see Fig. 7(a) for the logical, 

and Fig. 7(b) with actual signal polarities as 

implemented to limit in- versions). 

 

 
Fig. 6.  Layout of the shifter1 structure 

implemented on the 45 nm foundry process. 

Details of the gates are shown to the left (a) and 

(b), while a full entry is shown to the right. (a) 

First column cell. (b) Static shifter cell. (c) 

Overall layout of the shifter block. 

 

2) Second Shifter and Issue Count Logic (ICL):  

The second shifter combines the local outputs with 

the number of instructions ready in previous groups 

to determine the total number of ready instructions 

before the current instruction. The input to shifter2d 

is the L_d(0-3) for instructions 24 to 31 and sum of 

the number of instructions ready in groups a, b, and 

c The ICL calculates number of instructions ready 

in previous groups using static combinational logic 

in two inversions 

Two ICL blocks reside in the critical path to shifter2d 

that produces the aggregate number of instructions 

ready in all of the previous groups in four inversions. 

Fig. 8 shows the second shifter circuit, again 

implemented to minimize signal inversions and 

delay. AND gates drive an nMOS transistor, 

pulling the output to ground and ensuring that the 

output is always strongly driven. 

 

3)  Shift/Grant Generation Logic:   

The shift/grant  generator is a two inversion 

combinational circuit. If the  instruction is ready 

and the number of instructions ready before it, i.e., 

G(03) , is less than or equal to three, grant (gnt) 

for the instruction is set high. The number of shifts 

that a  particular instruction should undergo is 

equal to the number of instructions granted before 

it, one hot encoded as. G(03) If all previous ready 

signals are zeroes, it implies that more than four 
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instructions are ready before the current instruction. 

This is indicated by the logical OR of complements 

of previous ready signals. In this case, the output is 

asserted active low.  

 

IV.  PERFORMANCE EVALUATION 

The complete design of the proposed and the 

sort based issue queue in [13] was carried out using 

a foundry high performance SOI 45-nm CMOS 

process. Simulations were  carried out with VDD = 1 

V using Cadence Ultrasim. Key blocks were laid out 

(see Fig. 6) and other in- terconnects use estimated 

wire-loads. 

 

 
Fig. 7.  First shifter operation details. (a) The 

logical flow of ready signals and (b) shows actual 

implemented flow with inverted logic for the 

outlined columns. 

 

 
Fig. 8.  Second shifter (shifter2) logic to 

obtain the signals that drive that control the 

queue entry compaction multiplexers. 

A.  Worst-Case Timing Path Simulation 

The sorter based issue queue [13] requires 30 

inversions Including the latch td2q and tsetup times. 

The proposed shifter-based issue logic design 

requires 20 inversions. Fig. 9 shows the critical path 

timing simulation for the shift based design. The 

shift inputs to the CAM storage multiplexer setup 

30 ps before the rising edge of the clock to update 

the CAM with source operand data from one of the 

five instructions. The rising edge triggered flip-flop 

outputs the data to the comparator after a tclk2q delay 

of 18 ps. The comparator compares the source and 

destination tags and generates a source match signal 

after 24 ps (three low fan-out inversions). The source 

match and previous ready information is combined to 

generate the instruction ready signal 56 ps after the 

clock rising edge.  

 

 
Fig. 9.  Simulated waveforms of the proposed 

issue queue using shifter-based priority selection 

logic. 

 

The ICL outputs IT_abc(0-3) are 151 ps after the 

worst-case ready signal assertion and are fed to the 

second shifters that combine it with L(03) for each 

instruction to generate total number of instructions 

ready before the current instruction, G(03) for each 

instruction. The G(03) signals and ready signals for 

an instruction drive the shift/grant generator to 

generate grant signals for execution units after 

another 14 ps and one-hot shift signals for the CAM 

storage multiplexer. The last grant signal, gnt(31), 

is generated 227 ps after rising edge of the clock 

for the worst case critical path. This provides 
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sufficient setup time to allow a 4 GHz clock rate, 

assuming reasonable clock skew.   

The sort-based design [13] dissipates over 5x more 

energy per cycle than this static shift based design 

(see Table I). The area of the design proposed here 

is also considerably smaller, primarily due to fewer 

transistors. The proposed issue queue is compared 

against other issue queue architectures in Table II. 

While implementations are on differing fabrication 

technologies, clock frequencies and areas are 

normalized to the 45-nm technology node using 

standard scaling values. A higher clock frequency 

can be obtained with a lower issue width per queue, 

e.g., the CSG design [4] and Power4 [3], as 

opposed to the Alpha implementation [8]. 

However, the IWB implementation achieves a 

higher clock frequency together with larger issue 

width by sacrificing window size. 

 

POWER AND AREA COMPARISON 

Our proposed issue queue circuit architecture 

provides a unified queue with good window and 

issue width at adequate clock rates for most 

modern, i.e., power limited, CPUs. 

 

 
 

TABLE II 

ISSUE WIDTH AND WINDOW SIZE 

FOR DIFFERENT ARCHITECTURES 

 

 
 

As mentioned, in order to overcome scaling and 

portability issues, the proposed design employs only 

static CMOS gates. Thus the pro- posed design is 

amenable to auto place and route methods, if not 

full synthesis. While the shifter block was 

implemented as a regular embedde block, its layout 

was also accomplished using a commercially 

available APR tool (Encounter). 

 

The use of the static CMOS gates also allows the use 

of conventional timing tools for the timing analysis of 

the design. Timing analysis of the shifter block was 

carried out using Primetime, with results consistent 

with the circuit simulations. 

 

V.   CONCLUSION 
An oldest-first priority, 32 entry issue queue that 

divides the instruction ready signals into groups and 

selects the four highest priority instructions has been 

described. By processing ready signals in parallel, 

the complexity is reduced and select operations are 

completed in a single cycle. All logic is static 

CMOS, and can be clocked at 4 GHz in the target 

foundry 45-nm SOI process at the typical process 

conditions, with an energy consumption of 1.15 pJ 

per cycle at 1 V. The design is amenable to auto 

place and route, as well as static timing analysis, 

enhancing portability. The circuits are, of course, 

applicable to distributed issue queues. 
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